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An original method is proposed to reduce diffusion problem characterized by a thermal contact resistance
and non-linear boundary conditions. The method use a substructuring technique in which a branch modal
basis is obtained for each subdomain. The amalgam reduction method for each basis leads to a global
reduced model. A specific flux jump functional allows to optimize reduction. The numerical test case is
an electronic component coupled with a radiator and which follows a thermal regulation. For this case
a numerical study is made in order to observe the influence of the flux jump functional. Comparison
between the detailed model and the reduced one with optimal parameters gives a gain in computation
time of 82 for the same precision.
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1. Introduction

Among the different methods allowing to reduce a thermal con-
duction problem [3,5], the modal method [16–18] linked to the
amalgam reduction [13], showed its efficacity. The modal method
has been extended to non-linear or time-dependent parameters
cases by using a particular modal basis called the branch basis [12].
Recently an adaptation of the amalgam reduction has been pro-
posed for the branch modes [14]. The aim of this method is to be
as general as possible. However two kinds of cases could not be
solved by the branch method: At first in the actual formulation it
is not possible to take an internal thermal contact resistance into
account. Secondly, in case of very complex mesh corresponding to
a realistically complex physical problem, the branch basis compu-
tation is difficult because of computer memory limitation. In order
to overcome those obstacles, the substructuring technique seems
to be well adapted. This technique has been widely used for me-
chanical problems [2], and corresponds to the following steps:

• the domain is separated in several adjacent subdomains;
• for each subdomain, a set of eigenmodes is computed;
• the different reduced states-equations corresponding to the

several subdomains are linked to each other by internal
boundary conditions and solved;

• the reconstitution of the thermal field can then be carried out.

* Corresponding author. Tel.: +33 1 69 47 79 38; fax: +33 1 69 47 79 47.
E-mail address: laffay@crans.org (P.O. Laffay).
1290-0729/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved.
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There are few papers concerning thermal reduced model cou-
pling. Flament et al. [7] proposed a method called modal synthesis,
limited to perfect thermal contacts between the subdomains. The
modal synthesis technique is only used for the eigenmodes deter-
mination. Specific coupling modes are added to each local basis
yielding a new basis in the full domain. The modal reduction pro-
cedure is then classical. Another method is proposed by El Biyaali
et al. [6]. Their approach is numerical and instead of computing
coupling modes, a new diagonalization of the system is performed.
Menezo et al. [11] proposed a substructuring method for radiative
conditions, which takes into account internal boundaries between
non-adjacent subdomains and considers non-linear coupling con-
ditions on those internal boundaries.

However all of these works use classical eigenmodes (Fourier,
Neumann or Dirichlet modes defined by Eq. (9) and respective
boundary conditions) which are not rigorously adapted to non-
linear problems, and which lead to difficulties for the subdomains
coupling step. An extension of classical modes is made by the
branch eigenvectors, allowing consideration of non-linear prob-
lems.

This paper presents the branch modal substructuring theory
and stresses on the necessity to add a new functional in the ther-
mal problem. This functional minimizes the numerical flux jump
on an internal boundary and increases the reduced model efficacy.
An analysis of the influence of the flux jump penalization coeffi-
cient is performed, and we propose a technique allowing a blind
choice of this parameter. A test case is then treated: this concerns
an electronic component provided with thermal regulation. Precise
results are obtained in a very small CPU time, showing the interest
of the method.
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Nomenclature

c volumetric heat capacity . . . . . . . . . . . . . . . . . . . J K−1 m−3

f arbitrary function
h convective coefficient . . . . . . . . . . . . . . . . . . . . . W m−2 K−1

k thermal conductivity . . . . . . . . . . . . . . . . . . . . . . W m−1 K−1

M spatial parameter
N detailed model dimension
Ñ0 branch basis dimension
Ñ1 reduced branch basis dimension
n unit normal exterior vector
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
v test function
V branch eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

V structured branch eigenvector . . . . . . . . . . . . . . . . . . . . . . K
x state vector
z eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

Greek symbols

Ω , ∂Ω domain and boundaries

Γ physical interface
α amalgam coefficient
β flux jump penalization coefficient
γ maximum of the state vector evolution norm divided

by the time increment
τ eigenmode time constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
ζ Steklov number . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg s−2 K−1

π volumic source of energy . . . . . . . . . . . . . . . . . . . . . W m−3

Abbreviation

BRM Branch Reduced Model
TCR Thermal Contact Resistance . . . . . . . . . . . . . . . . m2 K W−1

Superscripts

( j) relative to domain Ω( j)

ext exterior
amb ambient
Ṽ reduced branch eigenvector

Ṽ reduced structured branch eigenvector
2. Branch modal substructuring theory

2.1. Description of the physical problem

Let Ω be a physical domain partitioned in two parts Ω(1)

and Ω(2) .
Let the unit normal exterior vectors be n, n(1) , n(2) for domains

Ω , Ω(1) , Ω(2) , respectively, and ∂Ω , ∂Ω(1) , ∂Ω(2) the boundaries
of domains Ω , Ω(1) and Ω(2) , respectively. Γ (12) is the physical
interface between Ω(1) and Ω(2) , modelized by a thermal contact
resistance [8].

The jump on Γ (12) from Ω(1) to Ω(2) for any function f is
defined by:

∀M ∈ Γ (12)
�

f (M)
�

Γ (12) ≡ f (2)(M) − f (1)(M) (1)

In Eq. (1), f ( j)(M) is the value of f in Ω( j) at point M . It is im-
portant to notice that f is double valuated for all point M in Γ (12) .

Equations of the physical problem (conductivities k( j) and ca-
pacities c( j) are only function of space) are:

j ∈ {1,2}, ∀M ∈ Ω( j), ∀t > 0

c( j) ∂T ( j)

∂t
= ∇(

k( j)∇(
T ( j))) + π( j) (2)

j ∈ {1,2}, ∀M ∈ ∂Ω( j) \ Γ (12), ∀t > 0

k( j)∇(
T ( j)) • n( j) = h

(
Text − T ( j)) (3)

∀M ∈ Γ (12), ∀t > 0

−k(1)∇(
T (1)

) • n(1) = −(−k(2)∇(
T (2)

) • n(2)
)

(4)

∀M ∈ Γ (12), ∀t > 0

−k(1)∇(
T (1)

) • n(1) = T (1) − T (2)

TCR
(5)

j ∈ {1,2}, t = 0, ∀M ∈ Ω( j)

T ( j) = T ( j0) (6)

Eqs. (4) and (5) express the two conditions of thermal con-
tact resistance: flux continuity and linear dependence between
flux and temperature jump. TCR is the thermal contact resistance
in m2 K W−1.
2.2. Variational formulation

The weak formulation of Eqs. (2)–(5) is similar to the classical
formulation, excepting a new term which takes into account the
temperature jump across the interface:

C(Ṫ , v) = −(
K(T , v) + B(T , v) + J T

Γ (12) (T , v)
) + A(v) (7)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C( f , v) =
∫ ∫
Ω

cf v dΩ

K( f , v) =
∫ ∫
Ω

k∇(v) • ∇( f )dΩ

B( f , v) =
∫

∂Ω

vhf d(∂Ω)

J T
Γ (12) ( f , v) =

∫
Γ (12)

�v �Γ (12) � f �Γ (12)

TCR
dΓ (12)

A(v) =
∫

∂Ω

vhText d(∂Ω) +
∫ ∫
Ω

vπ dΩ

(8)

Temperature field in Ω( j) is defined in the Hilbert space [9]
H1(Ω( j)) so temperature field in Ω is defined in H1(Ω,Γ (12)) ≡
H1(Ω(1)) ⊕ H1(Ω(2)).

The choice of test functions is then obvious, as soon as we
use internal approximation, v are functions of H1(Ω,Γ (12)). No-
tice that functions of H1(Ω,Γ (12)) are double valuated on Γ (12) .

2.3. Modal formulation for substructured model

2.3.1. The Branch eigenvalues problem
Branch modes of Ω( j) define a basis for H1(Ω( j)) [14]. As

branch modes are defined on Ω(1) or Ω(2) and test functions v
are defined on Ω , a new vector basis is defined from branch modes
bases on Ω(1) and Ω(2) .

Branch modes on Ω( j) are solutions of the eigenproblem de-
fined by the following equations:

j = 1,2, ∀M ∈ Ω( j)

∇(
k( j)∇V ( j)

i

) = z( j)
i c( j)V ( j)

i (9)
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j = 1,2, ∀M ∈ ∂Ω( j)

k( j)∇V ( j)
i • n( j) = −z( j)

i ζ ( j)V ( j)
i (10)

V ( j)
i is the i-order branch eigenvector, z( j)

i is the eigenvalue

of V ( j)
i . ζ ( j) is the Steklov function, which ensures the dimensional

integrity. Choice of ζ ( j) and branch modes properties are detailed
in [14].

A new basis for H1(Ω,Γ (12)) named structured branch mode
basis {z

n j
i
, V

n j
i
} where V

n j
i

is the n-order structured branch eigen-

vector equal to the V ( j)
i branch eigenvector of Ω( j) extended by 0

on Ω \ Ω( j) . Since local branch modes are not equal to 0 on Γ (12) ,
prolongation by 0 implies a discontinuity appearance on Γ (12) .

Temperature field can be decomposed on the structured branch
modes basis:

∀t, ∀M ∈ Ω T =
∞∑

n=1

x
n j

i
(t)V

n j
i

(11)

Each x
n j

i
(t) coefficient is the time dependent excitation state

of V
n j

i
.

The spatial discretization by the finite element method leads to
a finite number of eigenmodes equal to the degree of freedom N( j)

of the mesh. Practically, during the eigenmodes computation step,
a Marshall truncature [10,14] is made, i.e. the modes characterized
by the largest eigenvalue are not computed, Ñ( j)

0 eigenmodes are
then obtained.

2.3.2. The amalgam modal reduction
An advantage of a modal basis is its ability to be reduced.
In this study, the reduction of each local basis {z( j)

i , V ( j)
i } yields

a new basis {z̃( j)
i , Ṽ ( j)

i } characterized by a dimension Ñ( j)
1 	 Ñ( j)

0 .
As previously a reduced structured basis {z̃

n j
i
, Ṽ

n j
i
} is obtained from

each local reduced basis {z̃( j)
i , Ṽ ( j)

i }. The complete temperature
field is then decomposed as:

∀t, ∀M ∈ Ω T ≈ T̃ =
Ñ(1)

1 +Ñ(2)
1∑

n=1

x̃
n j

i
(t)Ṽ

n j
i

(12)

The amalgam reduction [13,14] (for each domain Ω(1) and Ω(2))
consists in splitting eigenvectors V ( j)

i of the branch basis into Ñ( j)
1

subspaces. In each subspace a linear combinaison is performed in
order to provide Ñ( j)

1 amalgamated eigenvectors Ṽ ( j)
i . The amal-

gam modal basis is then orthogonal.
Coefficient in the linear combination are linked to a physical

linear test case. For the substructuring technique, the choice of the
test case is delicate, because each subdomain is considered as in-
dependant, and the most representative case in comparison with
the real physical coupled problem has to be chosen. Section 3.3.2
presents the different used test case.

2.3.3. State equation
From the reduced basis and considering Eq. (12), the problem is

to determine the state coefficient. In order to obtain the time-state
differential equation, the weak formulation of the physical problem
is used (Eq. (8)), the test functions v being the reduced structured
branch eigenvectors:

Ñ(1)
1 +Ñ(2)

1∑
n=1

C(Ṽ
n j

i
, Ṽ

k j
i
) ˙̃x

n j
i
= −

Ñ(1)
1 +Ñ(2)

1∑
n=1

(
K(Ṽ

n j
i
, Ṽ

k j
i
) + B(Ṽ

n j
i
, Ṽ

k j
i
)

+ J T
Γ (12) (Ṽ

n j
i
, Ṽ

k j
i
)
)
x̃

n j
i
+ A(Ṽ

k j
i
) (13)
Fig. 1. Physical model.

2.3.4. Flux jump penalization
Due to modal reduction, there is an error on temperature field

and this error induces a flux jump at the interface, moreover it is
not possible to enforce exactly flux continuity across Γ (12) . How-
ever it is possible to decrease flux jump.

To do so, a new functional is introduced as in discontinuous
Galerkin methods [4]. This functional has to present these essen-
tial properties: bi-linearity, symmetry and positivity. The functional
should also be simple to write and should not increase computa-
tion time. Among all the functionals that could be used [4], the
following one has been chosen:

J Φ
Γ (12) ( f , v) = β

∫
Γ (12)

�
k∇( f ) • n(12)

�
Γ (12)

�
k∇(v) • n(12)

�
Γ (12) (14)

The numerical parameter β allows to ensure the dimensional ho-
mogeneity and to balance this term according to the others terms
of the state equation (13):

Ñ(1)
1 +Ñ(2)

1∑
n=1

C(Ṽ
n j

i
, Ṽ

k j
i
) ˙̃x

n j
i

= −
Ñ(1)

1 +Ñ(2)
1∑

n=1

(
K(Ṽ

n j
i
, Ṽ

k j
i
) + B(Ṽ

n j
i
, Ṽ

k j
i
)

+ J T
Γ (12) (Ṽ

n j
i
, Ṽ

k j
i
) + J Φ

Γ (12) (Ṽ
n j

i
, Ṽ

k j
i
)
)
x̃

n j
i
+ A(Ṽ

k j
i
) (15)

3. Application

3.1. The physical problem

We consider a microprocessor, described in 2D geometry
(Fig. 1). This electronic component is made up of:

• a silicon ship placed on a copper sheet. Joule effect in the sili-
con induces a volumic thermal power source π (subdomain 1),

• an aluminium radiator composed of longitudinal fins (subdo-
main 2).

Physical characteristics of these materials are precised on Ta-
ble 1. Between both pieces, the thermal contact resistance (TCR)
cannot be neglected, and leads to a temperature break at the in-
terface. In order to minimize this temperature jump, a thermal
interface material is set down at the internal boundary, leading
to a TCR = 25 × 10−6 m2 K W−1 [8]. The thermal regulation is con-
trolled by a double speed fan, activated by a thermal sensor placed



P.O. Laffay et al. / International Journal of Thermal Sciences 48 (2009) 1060–1067 1063
Table 1
Materials properties.

k (W m−1 K−1) c (J m−3 K−1) π (W m−3)

Silicon 145 1 514 500 3.4 × 107

Copper 380 3 363 000 0
Aluminium 216 2 340 000 0

Fig. 2. Convection coefficient evolution.

on the radiator (point A on Fig. 1), leading the convection co-
efficient follow to an hysteresis (Fig. 2). Ambient temperature is
Tamb = 20 ◦C.

Γ1 is the adiabatic boundary of the processor (silicon + cop-
per sheet), Γ (12) is the interface between the processor and the
radiator, Γ2 is the radiator convective boundary. The virtual bound-
ary Γ3 (symmetry plane) is introduced to simplify computation.

The problem equations are:

j ∈ {1,2}, ∀M ∈ Ω j, ∀t > 0

c( j) ∂T ( j)

∂t
= k( j)ΔT ( j) + π( j) (16)

j ∈ {1,2}, ∀M ∈ Γ1 ∪ Γ3, ∀t > 0

∇T ( j) • n( j) = 0 (17)

∀M ∈ Γ2, ∀t > 0

−k(2)∇T (2) • n(2) = h(T A)
(
T (2) − Tamb

)
(18)

∀M ∈ Γ (12), ∀t > 0

−k(1)∇T (1) • n(1) = k(2)∇T (2) • n(2) = T1 − T2

TRC
(19)

j ∈ {1,2}, ∀M ∈ Ω( j)

t = 0, T ( j) = Tamb (20)

3.2. Numerical resolution of the detailed model

In order to have a reference case, the thermal evolution of the
microprocessor is computed by classical finite elements method
with linear shape functions (triangle P 1). The temporal discretiza-
tion scheme is first order implicit, with a variable computation
time step. Matrices are described on sparse form, and equations
are solved by diagonal preconditioned conjugate gradient method.
All simulations are done for an evolution in time from 0 to 1000 s.

After a complete sensitivity analysis, we use as reference a fi-
nite element model (A) with 10 472 nodes (1911 nodes for the
processor and 8561 for the radiator). Time step determination cri-
terion is the maximum temperature difference between two time
steps which has to be less than 0.002 K. The convergence parame-
ter for the matricial solver is chosen equal to 10−12. Computation
Fig. 3. Extreme temperatures temporal evolution.

Fig. 4. Thermal field at t = 800 s.

time is then equal to 48 673 s. Fig. 3 presents the extreme temper-
atures temporal evolution (model A) while Fig. 4 corresponds to
the thermal field at t = 800 s (model A). The temperature jump at
the interface clearly appears.

In order to compare computation time between a finite ele-
ment model and a modal reduced model, we looked for a finite
element model B for which computation time is not extensive and
the maximum error εAB,max between model B and model A is less
than 1% of the full range temperature evolution ΔT , with:

εAB,max = max
t

(
max

Ω

(
abs(T B − T A)

))
(21)

Model B mesh is equal to model A mesh, but the maximum
temperature difference between two time steps is 0.007 K and the
convergence parameter for the matricial solver is equal to 10−8.
With those choices, the computation time of model B is equal to
16 408 s.

3.3. The reduced model

3.3.1. Eigenproblem
The eigenproblem linked to the precedent physical problem is

defined by Eqs. (9)–(10). For both subdomains the respective c and
k parameters correspond to the constant physical values. Concern-
ing the Steklov parameter, the classical rules defined in [14] are
followed:
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Fig. 5. Choice of the test cases internal boundary condition for processor.

• ζ ( j) = 0 for adiabatic boundaries,
• ζ ( j) = c( j)

∫
Ω( j) dΩ( j)/

∫
∂Ω( j) d(∂Ω( j)) in the other cases.

Eqs. (9)–(10) are discretized by finite elements on model A
mesh and provide a generalized matricial eigenproblem. This
eigenproblem is solved by ARPACK code [1,19] and gives:

• Ñ(1)
0 = 1750 eigenmodes for the processor with a computation

time of 53 s,
• Ñ(2)

0 = 5000 eigenmodes for the radiator with a computation
time of 891 s.

3.3.2. Amalgam reduction
For the substructuring technique, the choice of the test case is

delicate, because for each subdomain considered as independent,
the most representative case in comparison with the real physical
coupled problem has to be chosen.

In the considered application, the processor configuration is
classical. As shown in Fig. 5, an equivalent convective coefficient
for the boundary Γ (12) can be estimated by taking into account
all the thermal resistance between the boundary and the ambi-
ent environment (for a maximum convective coefficient equal to
60 W m−2 K−1):

heq1 = 1

TCR + e
k + SΓ2

SΓ3

1
h

≈ 1000 W m−2 K−1

Teq1 = Tamb (22)

The test case corresponding to the processor is then defined by the
following equations:

∀M ∈ Ω(1), ∀t > 0

c(1) ∂T (1)

∂t
= k(1)ΔT (1) + π(1) (23)

∀M ∈ Γ1 ∪ Γ3, ∀t > 0

∇T (1) • n(1) = 0 (24)

∀M ∈ Γ (12), ∀t > 0

−k(1)∇T (1) • n(1) = heq1
(
T (1) − Teq1

)
(25)

Concerning the radiator, the problem is more delicate, because
of the important voluminal thermal power dissipation in the pro-
Fig. 6. Choice of the test cases internal boundary condition for radiator.

cessor and because of the adiabatic condition for the boundary Γ1.
By default, used values are:

heq2 = heq1, Teq2 = Tmax + T0

2
= 40 ◦C (26)

where Tmax corresponds to the processor maximum temperature
during the simulation. The test case (Fig. 6) corresponding to the
radiator is then:

∀M ∈ Ω(2), ∀t > 0

c(2) ∂T (2)

∂t
= k(2)ΔT (2) (27)

∀M ∈ Γ2, ∀t > 0

−k(2)∇T (2) • n(2) = hamb
(
T (2) − Tamb

)
(28)

∀M ∈ Γ (12), ∀t > 0

−k(2)∇T (2) • n(2) = heq2
(
T (2) − Teq2

)
(29)

∀M ∈ Γ3, ∀t > 0

∇T (2) • n(2) = 0 (30)

3.3.3. Resolution of the reduced model
From the obtained amalgam modal basis, states can be com-

puted as specified in Eq. (13). At the opposite of the detailed
model, as matrices are small but full, a direct resolution algorithm
is used: the LDLt method. The temperature field evolution can be
built and compared with the results computed by the finite ele-
ment model A.

3.4. Results

With the obtained branch basis {z(1)
i , V (1)

i } and {z(2)
i , V (2)

i }, all
the computation steps (amalgam reduction, state equation reso-
lution, temperature building) are made for a large range of the
numerical parameters specified above, i.e.:

• internal boundary conditions for the amalgam test cases (heq1,
Teq1, heq2 and Teq2),

• order of reduction by domain Ñ ,
• flux jump penalization function parameter β .
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Fig. 7. Maximum error for a reduction order by domain equal to 10.

Fig. 8. Maximum error for a reduction order by domain equal to 80.

Table 2
Test cases parameters.

Test case heq1 heq2 Teq1 Teq2

(W m−2 K−1) (W m−2 K−1) (◦C) (◦C)

1 1000 1000 20 40
2 10 000 10 000 20 40
3 40 000 40 000 20 40

Error comparison is made with the detailed model A. Two er-
rors are computed:

• the maximum error

εmax = max
t

(
max

Ω

(
abs(T̃ − T A)

))
(31)

• the mean error

εmean = 1

Nt VΩ

Nt∑
i=1

(∫
Ω

abs(T̃ − T A)

)
(32)

3.4.1. Influence of parameter β for differents tests cases
Figs. 7 and 8 present the maximum error for a reduced model

characterized by an order of reduction by domain Ñ = 10 and
Ñ = 80, respectively, versus β , and for different amalgam test cases
defined in Table 2. The first observation is that the flux jump
penalization function has an important role: for an optimized β

value, the reduced model results are clearly more precise than
Fig. 9. Maximum error for an adaptated amalgam test cases (test case 1 in Table 2).

without this function (this case corresponds in the figure to the
smallest value of β). However for β greater than the optimized
value, the error becomes important there is so a compromise to
find.

Concerning the amalgam reduction test case, the choice of the
internal boundary condition (heq1, heq2, Teq1, Teq2) is quite large.
As long as the choice is physically acceptable, the reduced model
obtained from the test case is pertinent. In our application, the
only non-adapted internal boundary corresponds to the extreme
test case number 3. This condition is particularly unadapted for a
reduced model characterized by an order of reduction by domain
(Ñ = 10), and leads to important errors whatever the β value.

3.4.2. Influence of parameter β with the order of reduction
As explained above, for a reduced model a flux jump penaliza-

tion function has to be added in order to optimize results. The flux
jump is physically equal to zero, so there is not any physically jus-
tifiable choice for parameter β in Eq. (14). The problem is then to
choose the β optimized value. A parametric study of β influence is
made in this sense.

Fig. 9 compares the β influence on the maximum error for
different reduced model orders. Without flux jump penalization
(β = 10−7) and for all the reduction orders, the maximum errors
are close to each other and greater than 10%. With an optimized
β value, results are clearly better, the more the order of reduction
increases, the smaller the error is. For a small reduction order, the
maximum error is already divided by two, and for an important
reduction order the precision is improved by a factor 20. Further-
more the optimized β value dramatically depends on the reduction
order, since between the two extreme cases (10 and 80 modes) the
optimized β varies approximatively from 2 × 10−5 to 10−2. That is
why for a fixed value β (for example, 10−5) the best precision cor-
responds to the reduction order Ñ = 10.

3.4.3. Blind choice of β

Comparison with the reference finite model A showed that
there is an optimal trade-off for the β value. A method to deter-
mine this value without any knowledge of a reference solution is
presented here.

For inverse problems using a Tikhonov regularization, the L-
curve [15] provide an optimal choice for the trade-off on the pe-
nalization parameter value. In our case, the minimum of γ (β) is
close to the minimum of εmax(β). γ (β) is defined as:

γ (β) = max
t

(‖xn+1 − xn‖2

δtn

)
(33)
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Fig. 10. Normalized γ ∗(β) (test case 1 in Table 2).

Table 3
Reduction results.

Ñ 10 30 80

εmean (◦C) 0.1087 0.04880 0.01930
εmax (◦C) 2.387 0.5144 0.199
Computation time (s) 24 43 199

Where xn denotes the state vector at the iteration number n
and δtn the time increment at this iteration, the simulation is done
with the corresponding β .

For a graphical convenience we plot in Fig. 10 the normalized
γ ∗(β):

γ ∗(β) = γ (β) − minβ(γ (β))

maxβ(γ (β)) − minβ(γ (β))
(34)

3.4.4. Computation time
Table 3 presents the computation time needed for simulation in

modal space and temperature field reconstruction. The modal basis
determination is not included. β influence on computation time is
negligible: in the case of Ñ = 80, computation time is equal to
199 ± 1 s.

With a reduction order equal to 80, the reduced model pro-
vides the same precision than the detailed model B , but with a
computation time gain equal to 82.

3.4.5. Error
With a reduction order equal to 80, informations on the entire

temperature field (in time and in space) is computed with an max-
imum error (εmax) less than 0.2 K for the whole simulation. Fig. 11
presents a time evolution zoom at the point M where εmax(M) is
maximum (so εmax(M) = εmax):

εmax(M) = max
t

(
abs

(
T̃ (M) − T A(M)

))
(35)

The control process imposing the extreme temperatures, the er-
ror linked to the reduce model induces a temporal drift. Physically
there is a drift in the fan speed switch. That is why the error be-
tween both models corresponds to the temporal drift equal to 0.2 s
comparing to cycle period equal to 106 s.

4. Conclusion

This work presented results of the substructuring technique
adapted to the branch modal reduced models. This technique al-
lows to extend the application domain of branch reduced models,
since it becomes possible to solve a non-linear thermal problem
with a thermal contact resistance. Three points can be underlined:
Fig. 11. Time evolution zoom for the point M where εmax(M) is maximum.

• The reduction method used here corresponds to the amalgam
method developed initially for a non-substructuring problem,
in which an unique branch basis is obtained for the whole
considered domain. The choice of the test cases necessary for
this method is not obvious, because a test case has to be found
for each subdomain considered as independent. These test
cases do not then correspond to the real problem. However,
the test cases choice is not sensitive on the reduced model
precision, and good results are obtained for a wide range of
parameters.

• This method gives better results when a flux jump penaliza-
tion is added to the state equation. Studies showed that the
ponderation coefficient β of the flux jump penalization has a
very important effect. For an reduction order of 80, the pre-
cision is 20 times better with an optimal penalization than
without. However an unadapted β value could reduce preci-
sion of the results in comparison with unpenalized ones. The
penalization level is a function of the flux error, explaining
why the optimal β value is a function of the reduction or-
der. The β value choice is possible with the graphical study
of γ (β).

• This study proves the efficiency of the proposed method. In
the case of the studied electronic component, a precision
equivalent to the detailed discrete problem is obtained with
a gain in computation time equal to 82.
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